УДК 621.22

Браун Е.А., Родионов Л.В.

Самарский национальный исследовательский университет имени академика С. П. Королёва

Московское шоссе, 34, г. Самара, Российская Федерация, 443086

> brayn2121@gmail.com rodionov.lv@ssau.ru

DOI: 10.18287/2409-4579-2021-7-2-22-29 ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ ПУЛЬСАЦИОННОЙ ПРОИЗ-ВОДИТЕЛЬНОСТИ МАЛОРАСХОДНОГО ШЕСТЕРЕННОГО НАСОСА

Данная статья посвящена численному исследованию пульсационной производительности шестеренного насоса в программном ком-плексе Ansys CFX в двумерной постановке. В статье приведены чис-ленные данные насоса прототипа и модернизированного насоса с одинаковой удельной производительностью. Отличительными осо-бенностями последнего является другое количество зубьев и другая ширина зубчатого колеса, а также наличие разгрузочных канавок. Результаты расчетов показывают эффективность предложенных модернизаций. Предложены рекомендации по проектированию малорасходных насосов.

Ключевые слова: шестеренный насос; малорасходный; пульсационная производи-тельность; численное исследование

1 Введение

Объёмные широкое насосы нашли применение достоинств: ввиду их надежности, относительной технологичности изготовления и дешевизны. Особенно широко распространены насосы шестерённого типа внешнего зацепления (далее ШНВЗ). Помимо достоинств ШНВЗ присущи следующие недостатки: большие пульсации расхода (следственно И пульсации давления), ввиду чего к объёмным насосам (например, ШНВЗ) в т.ч. предъявляются строгие требования по pecypcy (ввиду повышенной виброактивности) и эргономике (ввиду повышенного шумоизлучения).

В мобильных малогабаритных системах своё место нашли малорасходные насосы низкого давления. Нередко такие насосы используются ДЛЯ перекачки среды С плотностью выше 900 кг/м³ (например, воды). Такие насосы могут выполняться полностью или частично из композиционных и порошковых материалов, что.

- во-первых, позволяет проектировать конструкцию насоса с меньшими массогабаритными характеристиками;

- во-вторых, ввиду их малонапорности, позволяет конструировать такие насосы с меньшими зазорами и использовать для более текучих сред;

- в-третьих, даёт возможность работать с агрессивными средами.

Пульсации ШНВЗ формируются из следующих составляющих:

1) кинематические (геометрические) пульсации расхода Q_{кин}, происходящие от процесса зацепления зубьев [1];

 геометрические пульсации давления запертого объема Q₃₀ при соединении запертого объёма с полостью нагнетания и всасывания через разгрузочные канавки [2, 3];

3) пульсации от обратного гидроудара, происходящие при раскрытии межзубового пространства в полость нагнетания [4];

4) импульсные утечки, возникающие изза клиновой щели в полюсе зацепления на линии контакта шестерней, погрешностей резкого перемещения опорных втулок шестерней при запирании межзубового пространства ввиду отсутствия разгрузочных канавок [5, 6].

Пульсации насоса зависят не только от его геометрии, особенностей зацепления зубьев, зазоров и режимов работы [7], но и от акустических свойств присоединённой гидравлической системы (активная нагрузка, емкостная или согласованная нагрузка) [8].

проектировании При новых перспективных насосов, доводке, а также модернизации имеющихся прототипов возникает вопрос с сохранением рабочего объема насоса при снижении их пульсационной активности, что достигается стандартными методами: изменением количества зубьев, разгрузкой запертого объёма и пр. Проверку эффективности озвученных выше мероприятий возможно оценивать экспериментально, но намного быстрее и дешевле это осуществляется численными методами.

2 Цель и задачи исследования

На основе проведённого анализа научных работ поставлена цель - формирование рекомендаций по снижению колебательной активности при модернизации малорасходного насоса-прототипа на основе численного расчётов.

В работе анализируются кинематические ввиду того, пульсации пульсации что малонапорных обратного гидроудара в насосах И импульсные утечки (ввиду наличия разгрузочных канавок) имеют незначительный суммарных вес В пульсациях исследуемых насосов. Геометрические пульсации давления запертого объема были учтены, детальное описания моделирования предоставлено в другой работе [9].

3 Объект и предмет исследования

Предметом исследования является малонапорный, малорасходный шестерённый насос, в котором исследуется пульсационная производительность на базе гидродинамического расчёта.

Ранее авторами [9] как на натурном экспериментальном стенде, так и численно исследовались функциональные (прочностные, гидравлические) и эргономические (акустические) показатели насоса-прототипа на гидравлическом масле HLP-46.

Полученные данные (рисунок 1) позволяют утверждать, что насос предназначен к длительной работе при объёмном КПД не ниже 0,5 (при n=2500 об/мин), выходном давлении до 1,3 МПа (при кинематической вязкости среды 46 мм²/с (для +40°С)) [9-11].

САD-модель стендовой системы (в составе которой исследовался насоспрототип (1)) представлена на рисунке 2. Система имеет традиционный нагрузочный дроссель игольчатого типа (7) и приводную систему с частотным преобразователем скорости вращения вала (8).

1 – шестеренчатый насосный агрегат;
2 – приводной электродвигатель; 3 – тройники;
4 – станина; 5 – вакуумметр; 6 – манометр;
7 – дроссель; 8 – частотный преобразователь;
9 – пьезометрический датчик давления;
10 – расходный бак; 11 – мерный бак;
Рисунок 2. САD-модель стендовой установки

Вид насоса-прототипа представлен на рисунке 3. Насос-прототип представляет из себя безподшипниковый вариант шестерёнчатого насоса, в котором корпуса выполнены из композиционного материала полиэфирэфиркетон (PEEK CF30) с 30%-ной примесью углеволокна, роторы выполнены из углеродистой стали.

1 – система роторов, 2 – корпусы,
3 – система каналов, 4 – болт
Рисунок 3. Конструкция насоса-прототипа с z=15

Для влияний исследования геометрических размеров шестеренного насосного агрегата на характеристики насоса смоделирован был в CAD-среде модернизированный шестеренчатый насос с тем же рабочим объемом, что и у насосапрототипа, другой шириной но И количеством зубьев (рисунок 4). Параметры насосов приведены в следующем разделе.

1 – ведущая шестерня; 2 – ведомая шестерня;
3 – опорные втулки; 4 – крышка; 5 – корпус;
6 – уплотнительная манжета;
7 – шайба металлическая; 8 – кольцо стопор-ное;
9 – уплотнительное кольцо; 10 – винт;
Рисунок 4. Конструкция модернизированного насоса с z=12 (в разрезе)

4 Расчёт гидродинамики и пульсационной производительности насосов

4.1 Постановка задачи

Поставлена	задача	провести
гидродинамический	расчёт	работы

шестеренчатого насоса-прототипа и модернизированного насоса в программном пакете Ansys CFX в 2D постановке, а так же разработать рекомендации на этапе модернизации насоса.

Испытание проводится без нагрузки для определения расхода И с нагрузкой (Поставлена провести задача работы гидродинамический расчёт шестеренчатого насоса-прототипа И модернизированного насоса в программном пакете Ansys CFX в 2D постановке, а так же разработать рекомендации на этапе модернизации Испытание насоса. проводится без нагрузки для определения расхода и с нагрузкой ($\overline{P_{\textit{вых}}}$ = 0.13 МПа) для определения давления как функции времени. Приняты следующие допущения:

- геометрические: длины входного и выходного каналов уменьшены для экономии расчетного времени;

- геометрия дросселя неизвестна, в связи с этим нагрузка задана за счёт уменьшения диаметра нагнетательного трубопровода;

- насос упрощён до каналов, в которых расположена рабочая жидкость, и двух шестеренчатых колёс;

- стенка между атмосферой и рабочим каналом бесконечно мала;

- частота вала привода постоянная;

- торцевые зазоры не учитываются.

Рисунок 5. Геометрия шестерней и рабочей жидкости для расчета без нагрузки

Рисунок 6. Геометрия шестерней и рабочей жидкости для расчета с нагрузкой

Данные о предметах исследования (насосе-прототипе и модернизируемом насосе) приведены в таблице 1.

Входной и выходной диаметры портов насоса-прототипа d_{н.пр} И для для модернизированного насоса d_{модерн} составляют 8 мм и 2 мм соответственно. Исследование проводилось при частоте вращения вала насоса n=1500 об/мин, нагрузка (*Р_{вых}*= 0.13 МПа) реализована через канал, на выходе из насоса, диаметром d=0.1 мм.

Граничные условия для расчета:

На входе и выходе – атмосферное давление. Рабочая среда – вода.

Шестерни – твердое тело. Задано вращение, верхняя шестерня по часовой стрелке, нижняя против часовой стрелки при расположении входа слева, выхода из насоса справа. Частота вращения 1500 об/мин.

lasi: Settings Flui	d Models Shitialization						Basic Settings Flux	Models Initialization	
Location and Type			Basic Settings	Aud Models Svitelzation			Domain Initializate	n	
ocation	watenashod freeparts		Heat Transfer			0	Coordinate Fram		
Ionain Type	Phád Dumain	*	Option	None	٠		Coordinate Franse	Coord 0 •	
Coordinate Frame	Coard 9	*	Tabulence			0	Initial Conditions		-
Pluid and Particle Defi	ntens	Ð	Option	Shear Stress Transport	٠		Velocity Type	Cartesian •	
Flad 3		-	Wall Punction	Automatic	٠		Cartesian Velocity I	amponents	- 6
		×	Transitional T	ubulence			Option	Automatic with Value 💌	
			Contractor	and compa			U	0 (m s^-1)	
Pluel 1 Option	Hoterial Ubvary		Option	None	٠		v	0 (m s^1)	
Haterial	Water	V	Thermal Radiation			0	w	0 (m s ^-1)	
Harphology			Option	None	٠		Static Pressure		6
Option	Continuous Plaid	*	Bectromagnet	c Model		- 10	Option	Automatic with Value *	
Minimum Yolu	ne Praction	Ð					Relative Pressure	1 (Po)	
Domain Models							Tabalence		
Press,re							Option	Nedum Ontensity = *	
Reserves Pressore	a beed								
Cetters	Non-Burgard	*							
Domain Motion		D							
Option	Stationary	٠							
Hesh Deformation		Ð							
Centino	None	*							

Рисунок 7 - Граничные условия рабочей жидкости

Basic Settings !	Solver Control			Basic Settings Solve	er Control	
Location and Type				Location and Type		
Location	gear1 2	×		Location	gear2.2	~
Domain Type	Immersed Solid	•		Domain Type	Immersed Solid	•
Coordinate Frame	Coord 0	•		Coordinate Frame	Coord 0	•
Domain Models Domain Motion			•	Domain Models Domain Motion		в
Option	Rotating	*		Option	Rotating -	
Angular Velocity	-1500 [rev min^-1]			Angular Velocity	1500 [rev min ~1]	
Axis Definition		(3	Axis Definition		в
Option	Two Points	•		Option	Two Points 👻	
Rotation Axis Fre	om 0 0.0104 0			Rotation Axis From	0 0 0	
Rotation Axis To	0 0.0104 1			Rotation Axis To	0 0 1	

Рисунок 8 - Граничные условия шестеренных колес

4.2 Расчёт пульсаций расхода и давления за насосом

На основании гидродинамического расчёта получены временные зависимости и амплитудно-частотные характеристики расхода и давления за насосом (рисунки 9,10 – без нагрузки; рисунки 11,12 – с нагрузкой).

Попомотр	Значения	Значения			
Параметр	для исходного насоса	для модернизируемого насоса			
Рабочий объем, см ³ /об		0,215			
Модуль, мм		0,8			
Частота вращения вала привода, об/мин	1500				
Теоретический расход, л/мин	0.323				
Угол зацепления, град	20				
Количество зубьев	15	12			
Делительный диаметр, мм	12	9,6			
Наружный диаметр, мм	13,6	11,8			
Диаметр впадин, мм	10	8,6			
Ширина зубчатого венца, мм	3,5	4,4			
Межосевое расстояние, мм	12,8	10,4			

Toganno	1	Chopumpani	HOTHER	1100000	прототино	H MOHOR	THURSDAY		1100000
гаолина	1.1	Славнительные	ланные	насоса-	прототина	имоле	низиру	emoro	насоса
									

Рисунок 9. Временная зависимость переменной составляющей расхода ($Q_{g_{bhx}}$ =0,27 л/мин,без нагрузки)

Время t, мс

Рисунок 10. АЧХ расхода $(\overline{Q_{gblx}}=0,27 \text{ л/мин, без нагрузки})$

Рисунок 11. Временная зависимость переменной составляющей давления ($\overline{P_{RMT}}$ =0,13 МПа, с нагрузкой)

Частоты процессов, возникающих в насосе рассчитываются по классическим формулам. Роторная частота, характерная процессу вращения приводного вала:

$$f_p = \frac{n}{60} [\Gamma u], \qquad (1)$$

где n - обороты приводного вала в минуту.

При этом, частота рабочего процесса вытеснения жидкости:

$$f_3 = \frac{n}{60} \cdot \text{kz} [\Gamma \mu], \qquad (2)$$

где k— коэффициент, связанный с колебательным процессом в насосе,

z - количество зубьев на одном венце. Согласно [12] k=1 для процесса перезацепления зубьев и запирания объёма в межзубовом пространстве (соответствует 1-я зубцовой частоте, индекс «з»), k=2 для процесса вытеснения (соответствует 2-я зубцовой частоте, индекс «з»).

Таким образом, на рисунках 10, 12 изображены основные частоты, характерные насосу: роторная частота fp, первая гармоника f_{13} . вторая гармоника f_{23} зацепления зубьев. Это основные частоты, определяющие периодичность процессов при работе насоса.

Динамический процесс также характеризует амплитуда пульсации. В виде одночислового параметра рассчитывалась усреднённая амплитуда пульсаций давления $\overline{A_p}$.

На практике, для оценки динамической напряженности насоса в составе системы рационально использовать понятие неравномерности пульсации давления:

$$\sigma_{\rm p} = \frac{A_{p_{max}} - A_{p_{min}}}{A_{p_{max}}} \cdot 100\%, \tag{3}$$

где $A_{p_{max}}, A_{p_{min}}$ – максимальное и минимальное значение амплитуды давления.

5 Анализ полученных результатов

Для анализа результатов гидродинамического расчёта насосапрототипа и модернизируемого насоса сведены в единую таблицу 2 основные значения параметров оценки пульсационного процесса.

Анализируемые параметры		Значения			
		насос-прототип	модернизированный насос		
0	роторная <i>f</i> _p , Гц	25	5		
acı Tbi	1-я зубцовая гармоника <i>f</i> ₁₃ , Гц	375	300		
h	2-я зубцовая гармоника f ₂₃ , Гц	750	600		
Усред давлен	нённая амплитуда пульсаций ния	4362	2851		
Степень неравномерности пульсаций давления σ_p , %		28,8	20,5		

Таблица 1. Сравнительные данные насоса-прототипа и модернизируемого насоса

По данным АЧХ расхода на выходе насоса видно (рисунок 12), что для насосапрототипа амплитуда пульсации расхода на 1-й зубцовой гармонике частоты зацепления (f₁₃=375 Гц) мала и не выделяется на фоне других амплитудных значений. Это может быть связано с тем, что для расхода основным процессом является именно процесс вытеснения. При этом амплитуда зубцовой первой гармоники соответствующей процессу образования запертого объема, в прототипе практически отсутствует, а в модернизированном слабо объяснятся отсутствие выражена, что противодавления при работе насоса без Предложенные мероприятия нагрузки. (разгрузочные канавки), описанные детально в другой работе [2], дают эффект, так как пульсации как первой так и второй зубцовой гармоники, при работе насоса под нагрузкой снизились.

6 Заключение

Полученные при помоши гидродинамического расчёта данные 0 пульсационной производительности позволяют на предварительном этапе оценить не только амплитуду пульсаций давления, но и при необходимости её зависимость при изменении среды, радиального зазора, частоты вращения вала привода и пр. факторов.

Такимобразом,использованиепрограммныхпакетовчисленногорасчётагидродинамическихпроцессов(в2Dпостановке)примодернизациинасосапомогаетопределитьхарактеристики

пульсационной производительности. Уточнение данных возможно за счёт реализации нагрузки через дросселирование потока, а не заужением выходного канала.

Недостаток предложенного подхода заключается в том, что не учитывает акустические характеристики присоединённой (нагрузочной) системы, которые в зависимости от собственных свойств (активная нагрузка, емкостная или согласованная нагрузка) будут входной пульсационный корректировать сигнал.

Список использованных источников

[1] Юдин Е. М. Шестеренчатые насосы. Основные параметры и их расчёт. Изд. 2-е, перераб. и доп. -Москва: Машиностроение, 1964. - 238 с.

[2] Родионов Л. В., Разработка математической модели гидродинамики "запертого" объёма в шестеренном насосе [Текст] / Родионов Л. В., Белов Г. О., Будько М. В., Крючков А. Н., Шахматов Е. В. // Вестник Самарского Государственного Аэрокосмического Университета им. академика С.П. Королёва. – 2009. - № 19. – С. 189-193 с.

[3] Foster, K., Computer Prediction of Cyclic Excitation Sources for an External Gear Pump / Foster, K., Tay-lor, R., & Bidhendi, I. M. // Proceedings of the Insti-tution of Mechanical Engineers, Part B: Manage-ment and Engineering Manufacture – 1985. - N 199. – C. 175-180 [4] Zhao, X.R.; Vacca, A., Theoretical Investigation into the Ripple Source of External Gear Pumps Energies – 2019. - N 12. – C. 535 c.

[5] Саенко В. П. Исследование зависимостей радиальных нагрузок, объемных и механический потерь от характера распределения жидкости в шестеренных насосах. - Дисс. канд. техн. наук - Харьков, 1964. - 188 с.

[6] Kojima, E., Characteristics of Fluidborne Noise Generated by Fluid Power Pump / Kojima, E., Masaaki Sh.// Bulletin of JSME – 1984. - № 232. – C. 2188-2195

[7] Иголкин А. А., Снижение колебаний и шума в пневмогидромеханических системах / Иголкин А.А.,

Крючков А.Н., Макарьянц Г.М., Прокофьев А.Б., Прохоров С.П., Шахматов Е.В., Шорин В.П.// Самарский Государственный Аэрокосмический Университет им. академика С.П. Королёва. – 2005. -№ 19. – С. 314 с.

[8] Шорин В.П., Устранение колебаний в авиационных трубопроводах - Москва: Машиностроение, 1980. - 156 с.

[9] Rodionov, L., A Gear Micropump without Bearings Production / Rodionov, L., Rekadze P. Stryczek J.// Applied Mechanics and Materials – 2015. - № 775. – C. 352-356

[10] Rodionov, L.V., Experimental research into noise emission of a gear micropump with plastic rotor / Rodionov, L., Rekadze P. // ATCES-2017

[11] Rekadze P., Analysis of acoustic efficiency of applying polymeric materials in a pump/ Rekadze P. Rodionov, L.,// 25th International Congress on Sound and Vibration – 2018. - N_{2} 775

[12] Родионов Л.В., Разработка метода расчета и улучшение динамических характеристик шестеренных насосов - [Место защиты: Сам. гос. аэрокосм. ун-т им. С.П. Королева]. - Самара, 2009. - 154 с. : ил.

Braun E.A., Rodionov L.V.

Samara National Research University

34, Moskovskoeshosse, Samara, 443086, Russian Federation

> brayn2121@gmail.com rodionov.lv@ssau.ru

NUMERICAL STUDY OF PULSATION PRODUCTIVITY OF A LOW-FLOW GEAR PUMP

This article is devoted to a numerical study of the pulsation perfor-mance of a gear pump in the Ansys CFX software package in 2D. The article presents numerical data of a prototype pump and an upgraded pump with the same specific performance. The distinctive features of the latter are a different number of teeth and a different width of the gear wheel, as well as the presence of discharge grooves. The results of cal-culations show the effectiveness of the proposed upgrades. Recommen-dations for the design of low-consumption pumps are offered.

Keywords: gear pump; low-cost; ripple performance; numerical investigation

References

[1] Yudin, E. M. (1964) Gear pump. Osnovnye parametry i ikh raschet, Moscow: Machine building, - 238 p.

[2] Rodionov, L. V., Belov, G. O., Bud'ko, M. V., Kryuchkov, A. N., Shakhmatov, E. V. (2009), "Razrabotka matematicheskoy modeli gidrodinamiki "zapertogo" ob"ema v shesterennom nasose", /. // Vestnik Samarskogo Gosudarstvennogo Aerokosmicheskogo Universiteta im. akademika S.P. Koroleva, No. 3, pp 189-193. (in Russian)

[3] Foster, K., Taylor, R., & Bidhendi, I. M., (1985) Computer Prediction of Cyclic Excitation Sources for an External Gear Pump / // Proceedings of the Institution of Mechanical Engineers, Part B: Management and Engineering Manufacture – 1985. - No. 199. – pp 175-180

[4] Zhao, X.R.; Vacca, A., (2019) Theoretical Investigation into the Ripple Source of External Gear Pumps Energies – 2019. - № 12. – No. 535 p.

[5] Saenko, V. P. (1964) Issledovanie zavisimostey radial'nykh nagruzok, ob"emnykh i mekhanicheskiy poter' ot kharaktera raspredeleniya zhidkosti v shesterennykh nasosakh. (Dissertatsiya kandidatkoy tekhnich-eskikh nauk), - Khar'kov, 188 p.

[6] Kojima, E., Masaaki Sh., (1984) Characteristics of Fluidborne Noise Generated by Fluid Power Pump, Bulletin of JSME, No. 232. – pp 2188-2195

[7] Igolkin, A.A., Kryuchkov, A.N., Makar'yants, G.M., Prokof'yev, A.B., Prokhorov, S.P., Shakhmatov, E.V., Shorin, V.P., (2005) Snizhenie kolebaniy i shuma v pnevmogidromekhanicheskikh sistemakh, Samarskiy Gosudarstvennyy Aerokosmicheskiy Universitet im. akademika S.P. Koroleva, No. 19. – 314 p.

[8] Shorin, V.P., (1980) Ustranenie kolebaniy v aviatsionnykh truboprovodakh, Moscow: Machine build-ing, - 156 p.

[9] Rodionov, L., Rekadze, P. Stryczek, J., (2015) Gear Micropump without Bearings Production, Applied Mechanics and Materials, No. 775. – pp 352-356

[10] Rodionov, L., Rekadze, P., (2017) Experimental research into noise emission of a gear micropump with plastic rotor, ATCES

[11] Rekadze, P. Rodionov, L., (2018) Analysis of acoustic efficiency of applying polymeric materials in a pump, 25th International Congress on Sound and Vibration.

[12] Rodionov, L.V., (2009) Razrabotka metoda rascheta i uluchshenie dinamicheskikh kharakteristik shesterennykh nasosov - [Mesto zashchity: Sam. gos. aerokosmicheskiy universitet im. S.P. Koroleva], Sama-ra - 154 p.