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ON LINEAR AND NONLINEAR TRAJECTORY 
TRACKING CONTROL FOR NONHOLONOMIC 
INTEGRATOR 
 
 
 
 
 
 
This paper presents two different kinds of trajectory tracking control 
strategies for the nonholonomic integrator known in literature as Brockett 
system. The first strategy presents a time-varying linear feedback control 
law and the second strategy is based on State Dependent Ricatti Equation 
(SDRE) method. Numerical simulation results indicated that both methods 
can be successfully used for control of the nonholomic integrator.  

Keywords: Brockett integrator, Hamilton – Jacobi – Bellman equation, 
SDRE method. 

 

1 Ntroduction 
 

Over the past two decades the control 
problem of nonholonomic systems has became 
to attention. The main reason for this is the fact 
that there are large number of mechanical 
systems that have non-integrable constraints 
such as robot manipulators, mobile robots, 
wheeled vehicles, space and underwater robots 
[1], [2], and there are interesting problems in 
the scientific field such as control of molecular 
dynamics [3], nuclear magnetic resonance 
imaging and rotating electrical machinery [4].  

Particularly, the autonomous mobile robots 
are system of great interest not only in 
academic studies but also in automotive 
industry, logistics machinery, aircraft industry 
and military applications. Mobile robot system 
models may contain nonholonomic constraints 
as, in example, of differential steering mobile 
robot. This system model is studied by [10], [7], 
[23] and the control problem of this system is 
challenging for traditional control methods. The 
two –wheeled differential steering mobile robot 

model can be reduced to the so called  
“nonholonomic integrator” introduced in 
control literature by Brockett in [5]. Sometimes 
it is referred to as Brockett's system or the 
Heisenberg system because it appears in 
quantum mechanics [6]. 

Several controllers were proposed for 
nonholonomic systems, most of them based on 
two main approaches which are posture 
stabilization and trajectory tracking. The 
problem of regulation control (or posture 
stabilization) is to stabilize a nonholonomic 
system at any given point in the state space; 
while the aim of trajectory tracking is to have 
the system following a reference trajectory. 

The stabilization problem has received 
considerable attention in last decade. (See, for 
example, paper of Kolmanovsky and 
McClamroch [7]) The research efforts have 
been made to develop controllers based on 
either smooth dynamic feedback or nonsmooth 
feedback. Astolfi [8], [9], Canudas de Wit and 
Sordalen [10], Kolmanovsky and McClamroch 
[7], Morgansen and Brockett [11] and others 
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used discontinuous approaches. In [12] Bloch 
and Drakunov [12] consider a sliding mode 
approach. Posture stabilization can also be 
achieved under time-varying continuous 
controls. (See, for example, Samson [13], Teel 
et al. [14], Pomet [15],).  

The tracking problem has received less 
attention. In Walsh et al. [16] a locally 
exponentially stabilizing control was proposed. 
A dynamic feedback linearization technique for 
wheeled mobile robot was presented in Canudas 
de Wit and Sordalen [10]. Global tracking 
control laws were proposed in Jiang and 
Nijmeijer [17], Jiang [18] and Qu [19]. Bloch 
and Drakunov [11] used sliding mode control 
for trajectory tracking of Brockett integrator. 

In this work two different kinds of trajectory 
tracking control strategies are presented for the 
nonholonomic integrator. The first strategy is a 
time-varying linear feedback control law [20] 
and the second strategy is based on State 
Dependent Ricatti Equation (SDRE) method 
[21].  

This paper is organized as follows. In the 
section 2 the nonholonomic brocket integrator 
system is presented as well as the tracking 
control problem statement for this system. The 
optimal control problem formulation and the 
description of the optimal linear feedback 
control method is presented in section 3. The 
section 4 contains a description of the State 
Dependent Riccatti Equation control method 
and a suboptimal control problem formulation 
for the Brockett integrator. The section 5 is 
dedicated to the results obtained by numerical 
simulations of the controlled system for both 
control strategies. Finally, the concluding 
remarks follow in the section 6.  

 
2 The control problem statement for the 
nonholonomic system  
 

One of the examples of a simplest system 
with a nonholonomic constraint is the Brockett 
nonholonomic integrator introduced in [5]. This 
system has a following form: 

 

    (1) 

 

Where   is a state vector,  is a 
time derivative of the state vector and  is 
a control vector. The main goal is to realize the 
tracking control of this system, by minimizing 
its deviation from the reference trajectory: 
 

    (2) 

 
Then, the system (1) can be described by 

error coordinates  expressing the 
difference between the system and a desired 
trajectory: 

 
     (3) 

 
Meanwhile the control vector  

represents a feedforward control which 
maintains the system at the desired trajectory 
(2) and satisfies the following equation: 

 

    (4) 

 
The feedback control u that realizes the 

tracking control of the system (1) to a trajectory 
(2) can be expressed as:  

 
     (5) 

 
Therefore, error coordinate system is given by 
 

 (6) 

 
 
3 Optimal Linear State Feedback Control 
Problem Formulation 
 

Considering the system:  
 

  (7) 

 
where  is a state vector,  

and  are bounded matrices, whose 

elements are time dependent,  is a 
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control vector, and  is a vector, 
whose elements are continuous nonlinear 
functions, with .  

Next, it is presented an important result, 
concerning a control law that guarantees 
stability for a nonlinear system and minimizes a 
nonquadratic performance functional. 
Theorem : If there exist matrices Q(t) and R(t) , 
both positive definite being Q symmetric such 
that there will be a function in form:  
 

,    (8) 
 

that is positive definite, then the linear  
feedback control u: 
 

   (9) 
 

is optimal to transfer the system (6) from the 
initial condition to a final state: 
 

,     (10) 

minimizing the functional: 
 

  (11) 
 

P(t) in eq. (9) is a positive definite symmetric 
matrix (for all ) which is the solution 

of the matrix differential Ricatti equation : 
 

, (12) 
 
satisfying the final condition:  
 

     (13) 

 
Remark 2: If  then the theorem 
above become the theorem formulated in [20] 
and their proofs are similar. 
In the case of Brocket integrator, the system (6) 
can also be expressed in the form (7), with 
following matrices values:  
 

, 

 

 ,    (14) 

 

. 

 
4 SDRE Control Problem Formulation 
 

SDRE method represents a systematic way 
of designing the nonlinear regulators [21], [22]. 
The explanation of the main idea of the method 
follows ahead.  
Consider the general infinite-horizon, input-
affine, autonomous, nonlinear regulator 
problem of the form: 
Minimize: 
 

 (15) 

 
with respect to the state y and control u subject 
to the nonlinear system constraints 
 

   (16) 
 

where  is a state vector, , , 

 and matrices Q(y) and R(y) are positive 
definite for all y. We assume that  and 

that  in a neighborhood of the origin. 
The SDRE method requires following steps to 
obtain the suboptimal solution for the control 
problem (15)-(16) [22]: 
i) Transformation of model (6) to a state 
dependent coefficient form so it become linear 
with state dependent coefficients:  
 

,   (17) 

 
where  e  . 
 
ii) Solution of the state dependent Riccati 
equation  
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 (18) 
to obtain , where P is a function of y. 
 
iii) Construction the nonlinear feedback 
controller  
 

  (19) 
 
The system (6) placed in the state dependent 
coefficient form yields:  
 

,   (20) 

where  and  

 

 . 

 
5 Numerical Simulation Results  
 

Numerical simulations were made in order to 
demonstrate the results of both linear and 
nonlinear trajectory tracking, first, using the 
optimal time varying control formulation 
described in section 3 and then, using SDRE 
control formulation described in section 4. The 
numerical simulations were performed using the 
Runge-Kutta fourth order integration method 
with variable step to solve the system 
differential equations.  

The desired trajectory was chosen as (21) for 
simulation of both control methods:  

 

    (21) 

 
Also the matrices Q and R were chosen 

constant for both methods:  
 

,  (22) 

 
Then, two sets of initial conditions were 

chosen to demonstrate de performance of the 

control methods as follows the description. In 
first case, the chosen initial conditions are 

 and figure 1 depicts the time 

evolution of the error coordinates for the 
optimal linear regulator method. The system 
matrices have following values: 

 

  

, ,   (23) 

 

 . 

 

 
Figure 1. Error coordinates time evolution with initial 

conditions  for Linear Feedback 

Method 
 
The figure 2 shows the time evolution of the 

error system for the second presented method, 
the nonlinear regulator (SDRE control), where 
the system matrices have following values: 

 

 and 

 

  (24) 
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Figure 2. Error coordinates time evolution with initial 
conditions  for SDRE Method 

 
The second set of initial conditions was 

chosen as , then the figure 3 

represents the time evolution of the error 
coordinates for the first control method (linear 
feedback ) with system matrices values as in 
(23). 

 

 
 

Figure 3 - Error coordinates time evolution with 
initial conditions  for Linear 

Feedback Method 
 

 Meanwhile, the figure 4 represents the time 
evolution of the error coordinates of the second 
control method (SDRE control), with system 
matrices values as in (24).  

 
Figure 4 – Error coordinates time evolution with 

initial conditions  for SDRE Method 

 
6 Conclusions  
 

This paper has presented two tracking 
control strategies for the Brockett 
nonholonomic integrator. The first strategy is an 
optimal time-varying linear feedback control 
and the second strategy is based on State 
Dependent Ricatti Equation (SDRE), the 
suboptimal method. Numerical simulation 
results have demonstrated that both methods 
track the system to a chosen reference trajectory 
in the small amount of time, therefore, both can 
be successfully used for control of the 
nonholomic integrator. However, the SDRE 
method has an advantage of an online 
implementation. 
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