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IMAGES OF CHAOS IN ATTITUDE DYNAMICS OF 

MULTI-SPIN SPACECRAFT AND GYROSTAT-

SATELLITES  
 

Chaotic aspects of attitude motion of multi-spin spacecraft and gyrostat-

satellites are investigated with the help of the Melnikov method and Poincaré 

sections. Images of dynamical chaos are plotted for some cases of phase 

portrait forms corresponded to different values of dynamical parameters. 

The bifurcations of the chaotic regimes with the change of phase portrait 

forms are illustrated. 
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1. Introduction. The study of spacecraft 

(SC) attitude dynamics aspects was and still 

remains one of the important problems of 

modern classical and space-flight mechanics [1-

45], and especially interesting features can be 

found in the framework of the dynamical chaos 

initiations into the dynamics of multi-rotor SC. 

The constructional multi-rotor scheme is 

used for many types of SC, including satellites 

with assemblies of reaction wheels and 

multi/dual-spin SC. Here, e.g., we can mention 

such famous space projects and platforms as 

“Intelsat” by Hughes Aircraft Company (the 

Intelsat II was first launched in 1966, but its 8th 

generation Intelsat VI was actual till 1991); also 

the very famous Hughes’ dual-spinner is the 

experimental tactical communications satellite 

TACSAT-I launched in 1969; the “Meteosat”- 

project (initiated by European Space Research 

Organization with the Meteosat-1 in 1977 and 

operated until 2007 with the Meteosat-7) also 

was constructed on the base of the dual-spin 

configuration.  

The spin-stabilized SC with mechanically 

despun antennas was applied in the framework 

of GEOTAIL (the collaborative mission of 

Japan JAXA/ISAS and NASA, within the 

program “International Solar-Terrestrial 

Physics”); the construction scheme with the 

despun antenna was used for Chinese 

communications satellites DFH-2 (STW-3, 

1988; STW-4, 1988; STW-55, 1990). The well-

known Galileo mission’s SC (launched on 

October 19, 1989 to visit Jupiter) was built as 

the dual-spinner (fig.1) [46]. Also, we ought to 

indicate the world's most-purchased commercial 

communications satellites such as Hughes / 

Boeing HS-376 (fg.1) [47, 48]. These satellites 

have spun sections with propulsion systems, 

solar drums, and despun sections with the 

communications payloads and antennas. Very 

versatile dual-spin models also are the Hughes’ 

HS-381 (the Leasat project), HS-389 (the 

Intelsat project), HS-393 (the JCSat project). 

   
Figure 1. Examples of dual-spin spacecraft: Galileo and HS-376
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The multi-rotor scheme can also correspond 

to the SC with assembles of reaction wheels, 

that is quite usual for real space projects. As 

first bright examples (fig.2) we can remember 

such programs like the Hubble Space Telescope 

(HST) [49], the Kepler Space Telescope (KST) 

[50], and many others missions. 

 

         
 

Figure 2. Examples of multi-rotor spacecraft with the reaction wheels assemblies: HST and KST 
 

The fundamental results for the problem of 

the rigid body dynamics and for corresponding 

applied tasks in the framework of space flight 

mechanics are described, e.g. in [1-7] and in 

many other works. Also we must indicate the 

conjugated directions of research [8-45], 

including analytical/numerical modeling, 

analyzing the regular/chaotic regimes of motion 

of multi-body systems under the influence of 

external/internal perturbations. These are the 

analysis of the attitude dynamics of a dual-spin 

SC and gyrostats [8-17], the investigation of the 

multi-rotor systems and multi-spin SC 

dynamics [18-21], obtaining exact solutions 

[22-29], the chaotic dynamical aspects study 

[30-45]. 

 

2. The task formulation and mathematical 

models. Let us consider the attitude dynamics 

of multi-rotor (multi/dual-spin) SC [19] basing 

on the multi-body mechanical system (fig. 3) 

with using the hamiltonian formalism and the 

well-known Andoyer-Deprit canonical variables 

(fig. 4). 

The Andoeyr-Deprit variable can be written 

basing on the direction and the value of the 

system angular momentum vector K as follows: 
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Figure 3. The multi-rotor mechanical structure of the 

multi-spin spacecraft 



 

18 

 

 

 
 

Figure 4. The Andoyer-Deprit canonical variables 

 

The kinetic energy of the system has the 

following form in the Andoyer-Deprit canonical 

coordinates in the addition of angles of rotors’ 

relative rotation 
2 3 11 6, , , ,..., ,i Nl      and 

corresponding conjugated momentums 

11 6, , , ,...,i NL G H     [19]:  
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and values A, B, C – are the main inertia 

moments of the main body, Ij  - the axial inertia 

moments of rotors in the j-th layer (we assume 

the equivalence of the rotors in each layer). 

Let us consider the case of the action of 

external torques with the small non-autonomous 

potential  

 cos ; 1P t     (2) 

where θ designates the “restoring” angle. 

This potential can describe the influence of 

external restoring torque from a weak magnetic 

field on the equatorial orbits at the regime of 

cylindrical precession of SC [29]. Also we will 

consider the polyharmonic form of the 

amplitude (it is actual practically in any case of 

the time-periodical amplitude and corresponds 

to the general form of the expansion in a 

Fourier series) 
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in the case when the “restoring” angle 

represents the angle between the angular 

momentum vector K and longitudinal axis of 

the SC Oz (coinciding with the vector k at the 

fig.4), and then the expression is actual 

cos /L G      (4) 

The Hamiltonian of the system can be written in 

the form with general and perturbed parts 
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where the small parameters is equal / G  . 

As it follows from the Hamiltonian (5) only one 

canonical pare (l, L) is positional, and other 

pares are cyclic; so it is enough to use two main 

dynamical equations in the form 

 

 

0 0

1 1

, ;

, ;

; ;

; ;

L L

l l

L l

L l

L f l L g

l f l L g

f f
l L

g g
l L





  

 

 
  

 

 
  

 

H H

H H

 (6) 

Now we consider the motion regime when only 

equatorial rotors have non-zero summarized 

angular momentum, then it is possible to write 

constant blocks 
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This regime can describe the SC motion at the 

implementation of the attitude reorientation 

with acting transverse (equatorial) reaction 

wheels assemblies (like in the HST or KST at 

the fig.2). And in this case we have the 

following right-pars-functions of equations (6): 
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3. The Melnikov function evaluation. In 

the purpose of the exact detection of homoclinic 

chaos initiation in the system at acting 

periodical perturbations we should prove the 

existence of simple zero-roots of the Melnikov 

function: 
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where the designation  ( ), ( )L t l t  implies 

evaluation of the integral along the homoclinic 

orbit. 

Taking into account correspondences [19] 

between the Andoyer-Deprit variables and 

components of the angular velocity of the main 

body  , ,p q r , the Melnikov function (9) in our 

case is reduced to the expression: 
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where the exact analytical expressions for p(t) 

and q(t) along the homoclinic orbit are obtained 

in [19] – there is not any necessity to repeat 

them; but we must show the qualitative form of 

this time-dependencies (fig.5). From this 

qualitative form the Statement 1 follows: 

the time-function p(t) is damped to zero odd 

function,  q(t) is even function, and, as the 

multiplication result, the block 

    34
ˆp t Bq t D  is the damped to zero odd 

time-function. 

Also with the help of the polyharmonic shape 

(3) and using trigonometric transformations we 

can obtain the multiplier  t   in the form 

which contains explicit time-blocks and 

ϑ-phase-blocks separately:     
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Figure 5. The qualitative form of time-dependencies for 

the angular velocity components along homoclinic orbit 

 

Taking into account the Statement 1 and the 

expression (11) (with understanding odd/even-

functions properties), the integration gives the 

following polyharmonic result for the Melnikov 

function 
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with recalculated constant coefficients:   

      34

1 1 1 1ˆ ˆ; ;
ˆ ˆ ˆ ˆ

ˆ sin const 0

n n n n

p

a A a b A b
B BA A

p t Bq t D n t dt




   
        

   

    

So, from the polyharmonic shape of the 

Melnikov function the Statement 2 follows: 

the Melnikov function in the considered case 

has infinite quantity of simple zero-roots, and 
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then the homoclinic chaos initiation is 

inevitable.  

This fact must be taken into engineers’ attention 

at the space mission preparation and at the 

choice of working areas of SC dynamical 

parameters.  

 

4. Numerical modeling of chaotic regimes. 
For illustrating of the proved fact of the chaos 

initiation it is possible to provide a series of 

numerical experiments in the Poincaré 

sections/maps plotting basing on the “main-

phase-repetition” condition:  mod 2 0Pt   .  

Let us define e.g. the following set of the 

polyharmonic perturbation coefficients: 

1 3 50.25; 1.25; 5;a a a       (13) 

  0 ; 1,3,5i ja b j i      and the main 

frequency numerical value: 0.75P  . 

As can we see from the modeling results, the 

chaotic layers are generated near the 

homo/heteroclinic bundles. These chaotic layer 

are generated as the result of multiple 

intersections of stable and unstable splited 

manifolds of homo/heteroclinic orbits. Inside 

such chaotic layer any phase trajectory perform 

complex “chaotic” evolutions with variable 

characteristics of the dynamical regime – this is 

one of the main reasons of the SC complex 

abnormal oscillations, tilting irregular motions, 

and space missions malfunctions. 

 

 

   
a)      b) 

   
c)       d) 

Figure 6. The Poincaré sections
1
 of the dimensionless phase space  ,l L G  for the SC  

with the triaxial inertia tensor at the following parameters
2
: 

12 56
ˆ ˆˆ0.5, 0.6, 0.7; 10; 0; 0.01A B C G D D        ; 

a): D34=0.9; b): D34=0.5; c): D34=0.1; d): D34=0.01 

                                                           
1
 All of the presented in this work Poincaré sections were plotted with the help of the author’s program complex [51]. 

2
 All of the parameters have numerical values corresponding to their own natural dimensions in the SI metric system. 
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a)        b) 

   
c)       d) 

   
e)       f) 

Figure 7. The Poincaré sections of the dimensionless phase space  ,l L G  for the SC with the dynamical symmetry: 

12 563; 0G D D   ; 

a)-d): ˆ ˆˆ 0.5, 0.7;A B C       e)-f): ˆ ˆˆ 0.6, 0.4;A B C    

a): D34=0.5; ε=0.01; b): D34=0.5; ε=0.1; c): D34=0.25; ε=0.01; d): D34=0.25; ε=0.1;  

e): D34=0.5; ε=0.01; f): D34=0.5; ε=0.1 
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a)       b) 

Figure 8. The Poincaré sections of the dimensionless phase space  ,l L G  

at all non-zero rotors’ angular momentums: 

12 34 563; 0.5; 0.6; 1.5; 0.05G D D D      ; 

a): ˆ ˆˆ0.6; 0.7; 0.9;A B C       b): ˆ ˆˆ 0.6, 0.4;A B C    

 

   
 

Figure 9. Irregular time-dependencies for the chaotic motion parameters 

12 34 563; 0; 0.5; 0; 0.1G D D D      ; 

ˆ ˆˆ 0.6, 0.4;A B C    

 

 

Presented above phase portraits (Poincaré 

sections) in the dimensionless space  ,l L G
 

are very informative and fully describe 

dynamics of SC in the sense of quality of 

motion regimes; and also any point of these 

portraits can explain [28, 29] the main 

properties of the current SC attitude in terms of 

the nutation angle  ( arccos / )L G   and the 

intrinsic rotation angle (l). 

From the modelling results the important 

notations follow. 

Firstly, the chaotic motion areas (chaotic 

layers) are presented in the phase portrait of the 

system (fig.6-8), and, moreover, these areas 

divide the phase portrait into separated zones. 

At increasing the value of perturbations (the 

value of the parameter ε) it is possible to see the 

effect of the extension of chaotic areas, as well 

as the merger of these areas into one big chaotic 

layer (at the fig.7 we can see this integration at 
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the transition from the frame 7-a to the frame 7-

b, from 7-c to 7-d, and from 7-e to 7-f). But, 

here we need to mention that these areas can be 

separable from each other (in the dynamical 

sense, which means the impermeability of the 

area border for the phase trajectory). Also, e.g., 

it is important here to indicate corresponding 

irregular time-dependences of motion 

parameters (fig.9) for the chaotic regime from 

the chaotic layer depicted at the figure 7-f. 

Secondly, the modelling results demonstrate 

the presence of additional chaotic layers close 

to the secondary homo/heteroclinic structures 

arising in addition to the main separatrix-

regions at the presence of perturbations. These 

secondary chaotic homo/heteroclinic bundles 

(“secondary chaos”) have properties similar to 

the main homo/heteroclinic chaos, and also 

must be taken into account at the formation of 

SC dynamics. 

In the third, bifurcations of types of the 

phase portrait take place (from the fragment 

fig.6-a to 6-b, 6-c, 6-d successively) at the 

changing value of the equatorial rotors’ angular 

momentum (D34); and we can also indicate the 

corresponding change of homo/heteroclinic 

bundles with chaotic layers – so, we should 

mention that at the transition to small values of 

equatorial angular momentum we take as the 

result, in fact, the phase portrait of the dual-spin 

SC with the longitudinal angular momentum 

(fig.6-d). 

Also it is worth to note the complexity of the 

phase portrait structure (fig.8) of the SC 

perturbed motion at the non-zero angular 

momentums of rotors in all three main 

directions; here we see the strong deformation 

of the phase portrait form in comparison with 

previous results for equatorial rotors angular 

momentums (fig.6, 7), with arising of 

secondary chaotic layers.  

 

5. Conclusion. So, the exact explicit 

polyharmonic form of the Melnikov function in 

considered case analytically proves the fact of 

splitting and multiple intersecting stable and 

unstable manifolds of the initial homoclinic 

separatrix-trajectory and the fact of local 

homoclinic chaos arising. Therefore the SC 

dynamics will be liable to the homoclinic 

chaotization, that is the main reason of the SC 

tilting motion with disrupting the space 

mission. This fact must be taken into engineers’ 

attention at the space mission preparation and at 

the choice of working areas of SC dynamical 

parameters.  
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ОБРАЗЫ ХАОСА В ДИНАМИКЕ УГЛОВОГО 

ДВИЖЕНИЯ МНОГОРОТОРНЫХ КОСМИЧЕСКИХ 

АППАРАТОВ И СПУТНИКОВ-ГИРОСТАТОВ  
 

Изучаются аспекты хаотической динамики многороторных аппаратов 

и спутников-гиростатов. Исследования проводятся с помощью метода 

Мельникова и сечений Пуанкаре. Образы динамического хаоса строятся 

для разнообразных фазовых портретов, соответствующих различным 

величинам динамических параметров. Иллюстрируются бифуркации 

хаотических режимов  с изменением структуры фазовых портретов. 

 
Ключевые слова: многороторные механические системы, космический 

аппарат с двойным вращением, космический аппарат со 

множественным вращением, гиростат, гомоклинический хаос, 

полигармонические возмущения, функция Мельникова, сечение Пуанкаре. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


