THERMOACOUSTIC OSCILLATIONS IN RESONATORS

Обложка

Цитировать

Полный текст

Аннотация

Thermoacoustic processes involve heat and sound interactions. Their appearances and applications range from combustion instabilities to novel refrigerators and imaging techniques. The focus of this paper is on thermoacoustic oscillations occurring in gases inside chambers. The conversion of heat to sound energy in resonators generally requires in-phase fluctuations of acoustic pressure and heat addition, whereas in specially designed systems the supplied sound can pump heat along solid surfaces from low to high temperature regions. Fundamentals, investigation methods, and some applications of thermoacoustic oscillating phenomena in resonators are reviewed in this paper.

 

Ключевые слова

Об авторах

Konstantin I. Matveev

School of Mechanical and Materials Engineering
Washington State University

Автор, ответственный за переписку.
Email: matveev@wsu.edu

Associate Professor

США

Список литературы

  1. Rayleigh, J.W.S., 1945, The Theory of Sound, Dover Publications, New York (re-issue).
  2. Culick F.E.C., 1987, A note on Rayleigh’s criterion, Combustion Science and Technology, 56, pp. 159-166.
  3. Raun, R.L., Beckstead, M.W., Finlinson, J.C., and Brooks, K.P., 1993, A review of Rijke tubes, Rijke burners and related devices, Progress in Energy and Combustion Science, 19, pp. 313-364.
  4. Logan, P., Lee, J.W., Lee, L.M., Karagozian, A.R., and Smith, O.I., 1991, Acoustics of a low speed dump combustor, Combustion and Flame, 84, 93-109.
  5. Garrett, S.L. and Backhaus, S., 2000, The power of sound, American Scientist, 88(6), 516-525.
  6. Wang, L.V., 2008, Prospects of photoacoustic tomography, Medical Physics, 35, 5758.
  7. Daschewski, M., Boehm, R., Prager, J., Kreutzbruck, M., and Harrer, A., 2013, Physics of thermo-acoustic sound generation, Journal of applied Physics, 114, 114903.
  8. Matveev, K.I. and Hernandez, R., 2013, Early onset of sound in Rijke tube with abrupt contraction, 21st International Congress in Acoustics, Montreal, Canada, Proceedings of Meetings on Acoustics, 19, 045088.
  9. Ward, W.C. and Swift, G.W., 1994, Design environment for low-amplitude thermoacoustic engines, Journal of the Acoustical Society of America, 95, pp. 3671-3672.
  10. Harrje, D.T. and Reardon, F.H., 1972, Liquid propellant rocket combustion instability, NASA SP-194.
  11. Flandro, G.A., 1986, Vortex driving mechanism in oscillatory rocket flows, Journal of Propulsion, 2, pp. 206-214.
  12. Natanzon, M.S., 1986, Combustion Instability, Mashinostroenie, Moscow.
  13. Zinn, B. T. and Neumeier, Y., 1997, An overview of active control of combustion instabilities, 35th Aerospace Sciences Meeting and Exhibit, Reno, NV, AIAA paper No. 1997-461.
  14. Candel, S., 2002, Combustion dynamics and control: Progress and challenges, Proceedings of the Combustion Institute, 29, 1-28.
  15. Culick, F.E.C., 2006, Unsteady Motions in Combustion Chambers for Propulsion Systems, RTO AGARDograph AG-AVT-039.
  16. Eisinger, F.L. and Sullivan, R.E., 2007, Prediction of thermoacoustic vibration of burner/furnace systems in utility boilers, ASME PVP Conference, San Antonio, TX, ASME Paper No. 2007-26090.
  17. Angelberger, C., Veynante, D., and Egolfopoulos, F., 2000, LES of chemical and acoustic forcing a premixed dump combustor, Flow, Turbulence and Combustion, 65, 205-222.
  18. Srinivasan, S., Ranjan, R., and Menon, S., 2015, Flame dynamics during combustion instability in a high-pressure, shear coaxial injector chamber, Flow, Turbulence and Combustion, 94(1), 237-262.
  19. Pun, W., 2001, Measurements of Thermo-Acoustic Coupling, PhD Thesis, California Institute of Technology, Pasadena, CA, USA.
  20. Kedia, K.S., Altay, H.M., and Ghoniem, A.F., 2011, Proceedings of the Combustion Institute, 33, 1113-1120.
  21. Kedia, K.S., Altay, H.M., and Ghoniem, A.F., 2011, Proceedings of the Combustion Institute, 33, 1113-1120.
  22. Culick, F.E.C., 1976, Nonlinear behavior of acoustic waves in combustion chambers, Acta Astronautica, 3, 714-757.
  23. Merk, H.J., 1957, Analysis of heat-driven oscillations of gas flows, Applied Scientific Research, A 6, 402-420.
  24. Crocco, L. and Cheng, S.-I., 1956, Theory of Combustion Instability in Liquid Propellant Rocket.
  25. Jung, S. and Matveev, K.I., 2010, Study of small-scale standing-wave thermoacoustic engine, Journal of Mechanical Engineering Science, 224(1), 133-141.
  26. Juniper, M.P., 2011, Triggering in the horizontal Rijke tube: non-normality, transient growth and bypass, transition, Journal of Fluid Mechanics, 667, 272-308.
  27. Kulkarni, R., Balasubramanian, K., and Sujith, R.I., 2011, Non-normality and its consequences in active control of thermoacoustic instabilities, Journal of Fluid Mechanics, 670, 130-149.
  28. Rott, N., 1980, Thermoacoustics, Advances in Applied Mechanics, 20, 135-175.
  29. Ward, W.C. and Swift, G.W., 1994, Design environment for low-amplitude thermoacoustic engines, Journal of the Acoustical Society of America, 95, 3671-3672.
  30. Swift, G.W., 2002, Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators, Acoustical Society of America, Sewickley, PA.
  31. Backhaus, S.N. and Swift, G.W., 2000, A thermoacoustic-Stirling heat engine: Detailed study, Journal of the Acoustical Society of America, 107, 3148-3166.
  32. Gardner, D.L. and Swift, G.W., 2003, A cascade thermoacoustic engine, Journal of the Acoustical Society of America, 114, 1905-1919.
  33. Tijani, M.E.H. and Spoelstra, S., 2011, A high performance thermoacoustic engine, Journal of Applied Physics, 110, 093519.
  34. Swift, G.W., 2002, Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators, Acoustical Society of America, Sewickley, PA.
  35. Wollan, J.J., Swift, G.W., Backhaus, S.N., and Gardner, D.L., 2002, Development of a thermoacoustic natural gas liquefier, AIChE Meeting, New Orleans, LA.
  36. Berson, A., Michard, M., and Blanc-Benon, P., 2008, Measurement of acoustic velocity in the stack of a thermoacoustic refrigerator using particle image velocimetry, Heat and Mass Transfer, 44(8), 1015-1023.
  37. Matveev, K.I., 2010, Unsteady model for standing-wave thermoacoustic engines, Journal of Non-Equilibrium Thermodynamics, 35(2), 85-96.
  38. Matveev, K.I. and Jung, S., 2011, Modeling of thermoacoustic resonators with non-uniform medium and boundary conditions, ASME Journal of Vibration and Acoustics, 133(3), 031012.
  39. Scalo, C., Lele, S.K., and Hesselnik, L., 2015, Linear and nonlinear modeling of a theoretical travelling-wave thermoacoustic heat engine, Journal of Fluid Mechanics, 766, 368-404.
  40. Wollan, J.J., Swift, G.W., Backhaus, S.N., and Gardner, D.L., 2002, Development of a thermoacoustic natural gas liquefier, AIChE Meeting, New Orleans, LA.
  41. Yu, Z., Backhaus, S., and Jaworski, A.J., 2009, Design and testing of a travelling-wave looped-tube engine for low-cost electricity generators in remote and rural areas, 7th International Energy Conversion Engineering Conference, Denver, CO, AIAA Paper No. 2009-4540.
  42. Gardner, D.L. and Howard, C.Q., 2009, Waste-heat-driven thermoacoustic engine and refrigerator, AAS Conference, Adelaide, Australia.
  43. Symko, O. G., Abdel-Rahman, E., Kwon, Y. S., Emmi, M., and Behunin, R., 2004, Design and development of high frequency thermoacoustic engines for thermal management in microelectronics. Microelectronics Journal, 35, 185-191.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Konstantin I. Matveev, 2015

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-ShareAlike 4.0 International License.

Динамика и виброакустика

ISSN 2409-4579 (Online)

Учредитель и издатель журнала: ФГАОУ ВО «Самарский национальный исследовательский университет имени академика С. П. Королёва» (Самарский университет), Московское шоссе, 34, 443086, г. Самара, Российская Федерация.

Выписка из реестра зарегистрированных СМИ

Главный редактор: академик РАН Евгений Владимирович Шахматов

4 выпуска в год

Цена свободная

Адрес редакции: 443086, г. Самара, ул. Гая, 43, 324 ауд.

Адрес для корреспонденции: 443086, г. Самара, Московское шоссе, 34, Самарский национальный исследовательский университет (Самарский университет), 14 корпус, 324 ауд.

Тел: 8 (846) 267 47 66

e-mail: dynvibro@ssau.ru

www: https://dynvibro.ru

© Самарский университет

 

 

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах