ANALOG MODELING OF THE HYDRODYNAMIC CHARACTERISTICS OF A POSITIVE-DISPLACEMENT PUMP: SEPARATION OF THE SOURCE OF FLOW FLUCTUATIONS AND THE SYSTEM OF FLOW PART PASSIVE ELEMENTS


Cite item

Full Text

Abstract

The paper, using the example of an external gear pump, considers the solution of the problem of determining the node for separating the source of oscillations and the system of elements of the flow path is considered in order to simplify the study and analysis of hydrodynamic processes behind the source of oscillations. To separate the source of oscillations and the system of elements of the flow path, an experimental approach is used, during which the characteristic of pressure pulsations according to the “tooth” harmonic is determined behind the pump interacting with the serial RLC-circuit. An experimental study using dynamic analogies, methods of classical logic and methods of circuit theory made it possible to determine the connection node of the oscillations source and the system of elements of the flow path on the equivalent circuit, and in the graphic image of the flow part of the pump - to determine the corresponding section.

About the authors

P. D. Rekadze

Samara National Research University (Samara University)

Author for correspondence.
Email: rekadze.pd@ssau.ru
Russian Federation, 34, Moskovskoye shosse, Samara,443086, Russian Federation

References

  1. Atabekov G.I. Osnovy teorii tsepey / Atabekov G.I. – SPb.: Izdatel'stvo «Lan'», 2009, 432 p. (in Russian).
  2. Shorin, V.P. Ustraneniye kolebaniy v aviatsionnykh truboprovodakh / Shorin, V.P. - M.: Mashinostroenie, 1980. - 156 p (in Russian).
  3. Kuleshkov, Yu.V. and etc. Analiz teoreticheskikh issledovaniy pul'satsii mgnovennoy podachi shesterennogo nasosa, Yu.V. Kuleshkov, T.V. Rudenko, M.V. Krasota, K.Yu. Kuleshkova // Konstruyuvannya, vyrobnytstvo ta ekspluatatsiya silʹsʹkohospodarsʹkykh mashyn: zahalʹnoderzh. mizhvid. nauk.-tekhn. zb. - Kirovograd: KNTU, 2013. - VIP. 43, part 1. - Pp. 83-96(in Russian).
  4. Kuleshkov, Yu.V. et al., Analiz eksperimental'nykh issledovaniy pul'satsii mgnovennoy podachi shesterennogo nasosa / Yu.V. Kuleshkov, T.V. Rudenko, M.V. Krasota, K. Yu. Kuleshkova // Konstruyuvannya, vyrobnytstvo ta ekspluatatsiya silʹsʹkohospodarsʹkykh mashyn: zahalʹnoderzh. mizhvid. nauk.-tekhn. zb. - Kirovograd: KNTU, 2013. - VIP. 43, part 2. - Pp. 134-148 (in Russian).
  5. Yudin, Ye.M. Shesterennyye nasosy / Ye.M. Yudin. – M.: Mashinostroyeniye, 1964. – 232 p. (in Russian).
  6. Johnson, D.N. Fundamentals of Fluid-Borne Noise, Chapter 13 - Measuring Fluid-Borne Noise Characteristics using the Secondary Source Method / D.N. Johnson. - Center for PTMC, University of Bath, April 2004.
  7. Artyukhov, A.V., Brudkov, L.I. Osobennosti chastotnykh ispytaniy gidravlicheskikh nasosov / A.V. Artyukhov, L.I. Brudkov // In: Vibration strength and reliability of aircraft engines and systems, KuAI - 1982 - vol. 9 - 12 - P. 17 (in Russian).
  8. Bramley C., Johnston D.N. Comparison of methods for measuring pump flow ripple and impedance. In: ASME/BATH 2017 symposium on fluid power and motion control, Sarasota, FL, 16–19 October 2017, paper no. FPMC2017-4223. New York: ASME.
  9. Ericson L. On Fluid Power Pump and Motor Design - Tools for Noise Reduction. PhD Thesis, Linkopings University, 2011.
  10. Johnson, D.N., Drew, J.E. Measurement of positive displacement pump flow ripple and impedance / D.N. Johnson, J.E. Drew // ARCHIVE: Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering. - 1991-1996. - Vol. 205-210. - 210(19). - Pp. 65-74.
  11. Liu, J. Source flow ripple and source impedance measurement for different hydraulic pumps / J. Liu // Proceedings of the InterNoise 2018 - Pp. 1-7.
  12. ISO 10767-1:2015. Hydraulic fluid power – Determination of pressure ripple levels generated in systems and components, Part 1. Method for determining source flow ripple and source impedance of pumps, International Standards Organization.
  13. Sanchugov, V. I., Rekadze, P. D. Determination of the dynamic characteristics of a gear pump by the method of load variation using special bench systems // Advanced Engineering Research. - 2022. - V. 22, No. 2. - Pp. 130–141. https://doi.org/10.23947/2687-1653-2022-22-2-130-141.
  14. GOST R 52002-2003 Elektrotekhnika. Terminy i opredeleniya osnovnykh ponyatiy [Text] - Vved. 2003-07-01 (in Russian).
  15. Artobolevsky, I.I., Bobrovnitsky, Yu.I., Genkin, M.D. Vvedeniye v akusticheskuyu dinamiku mashin / I.I. Artobolevsky, Yu.I. Bobrovnitsky, M.D. Genkin - M.: Gl. red. fiz.-mat. lit., 1979. – 296 p. (in Russian).
  16. N.N. PRASP – Pressure Ripple Analysis Software Package, User Guide and Reference Manual, Version 5.05.00, University of Bath, UK, 2018.
  17. De Freitas F.J.T., The generation and transmission of pressure fluctuations in pump suction lines - [Place of defense: University of Bath]. - Bath, 1982. - 311 p.
  18. Berdnikov, V.V. Prikladnaya teoriya gidravlicheskikh tsepey / V.V. Berdnikov. M.: Mashinostroenie, 1977 (in Russian).
  19. Igolkin, A.A. Snizheniye kolebaniy i shuma v pnevmogidromekhanicheskikh sistemakh / Igolkin A.A., Kryuchkov A.N., Makaryants G.M., Prokofiev A.B., Prokhorov S.P., Shakhmatov E. V., Shorin V.P. // Samarskiy Gosudarstvennyy Aerokosmicheskiy Universitet im. akademika S.P. Korolova. - 2005. - № 19. - 314 p. (in Russian).
  20. P. L. Kapitsa, Eksperiment. Teoriya. Praktika; Stat'i i vystupleniya. - 4-ye izd., ispr. i dop. – M.: Nauka. Gl. red. Fiz.-mat. lit., 1987 – 496 p., il. – (Nauka. Mirovozzreniye. Zhizn') (in Russian).
  21. Ozherel'eva T.A. Logicheskiye priyemy i metody, primenyayemyye pri izvlechenii znaniy // ITNOU. 2018. No. 6. Pp. 69-77 (in Russian).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Rekadze P.D.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Свидетельство о регистрации СМИ, 16+

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies