APPLICATION OF THE RESONANCE METHOD AND THE SPECKLE INTERFEROMETRY METHOD FOR MEASURING THE DYNAMIC CHARACTERISTICS OF CONSTRUCTIONS


Cite item

Full Text

Abstract

Experimental testing of rocket and space techniques is one of the most difficult, time-consuming and expensive stages of the development and creation of these products. Modern development methods tend to reduce the proportion of experimental studies and replace them with numerical modeling. However, the correspondence of the numerical model to the real object is determined by the initial data, so it is not possible to completely abandon the full-scale testing of products. Particular attention in the development and creation of rocket and space techniques is paid to vibration effects. Obtaining reliable basic dynamic characteristics of the product during vibration tests in a purely theoretical way is practically impossible. So the damping coefficients can only be determined experimentally. The paper analyzes the main methods for determining dynamic characteristics, and a choice is made in favor of the resonance method. The accuracy of determining the dynamic characteristics by the resonance method depends on the accuracy of the construction of the resonance curve. In this paper, to construct a resonance curve, it is proposed to use a speckle interferometer, which allows simultaneously recording the shape of natural vibrations and amplitude, using time averaging methods and speckle interferometry on a single speckle. It is shown that speckle interferometry on a single speckle makes it possible to measure the amplitudes of natural vibrations in real time and with high accuracyт ̵  less than one-eighth of the wavelength of the laser radiation used in the speckle interferometer. These circumstances are especially important in the development and creation of spacecraft with precision equipment.

About the authors

M. N. Osipov

Samara National Research University (Samara University)

Email: osipov7@yandex.ru
Russian Federation, 34, Moskovskoye shosse, Samara, 443086, Russian Federation

R. N. Sergeev

Samara National Research University (Samara University)

Author for correspondence.
Email: romansr@yandex.ru
Russian Federation, 34, Moskovskoye shosse, Samara, 443086, Russian Federation

M. D. Limov

Samara National Research University (Samara University)

Email: romansr@yandex.ru
Russian Federation, 34, Moskovskoye shosse, Samara, 443086, Russian Federation

References

  1. Mikishev G. N. Eksperimental'nyye metody v dinamike kosmicheskikh apparatov. M.: Mashinostroyeniye, 1978. 248 s.
  2. Babayev A. A. Amortizatsiya, dempfirovaniye i stabilizatsiya bortovykh opticheskikh priborov. L.: Mashinostroyeniye. Leningr. otd-niye, 1984. 232 s.
  3. Telepnev P. P., Kuznetsov D. A. Metody vibrozashchity pretsizionnykh kosmicheskikh apparatov. Khimki: Izdatel' AO «NPO Lavochkina», 2019. 263 s.
  4. Belousov A. I, Tkachenko S. I., Samsonov V. N., Tkachenko O. A.. Prochnostnaya i vibratsionnaya otrabotka kosmicheskikh apparatov. Samara: Izd-vo Samarskogo nauchnogo tsentra RAN, 2002. 502 s.
  5. Karmishin A. V., Likhoded A. I., Panichkin N. G., Sukhinin S. N. Osnovy otrabotki prochnosti raketnokosmicheskikh konstruktsiy M.: Mashinostroyeniye, 2007. 480 c.
  6. Vvedenskiy N. YU., Pustobayev M. V. Analiz otrabotki kosmicheskoy tekhniki na mekhanicheskoye vozdeystviye v SSHA, YES i RF // Voprosy elektromekhaniki. Trudy VNIIEM. 2012. T.130. S.19 26.
  7. Bezmozgiy I. M., Ivanov S. V. Metodika avtomaticheskoy proverki konechnoelementov krupnogabaritnykh kosmicheskikh moduley // Kosmicheskaya tekhnika i tekhnologii. 2022. №3(38). S. 100-112.
  8. Bezmozgiy I. M., Kazakova O. I., Sofinskiy A. N., Chernyagin A. G. Otrabotka vibroprochnosti avtomaticheskogo kosmicheskogo apparata distantsionnogo zondirovaniya Zemli // Kosmicheskaya tekhnika i tekhnologii. 2014. №4(7). S. 31-41.
  9. Makridenko L. A., Volkov S. N., Gecha V. YA., Zhilenov M. YU., Kazantsev S. G. Osnovnyye istochniki krasivykh izobrazheniy Zemli, imeyushchikhsya na orbital'noy opticheskoy s"yomke s borta MKA // Voprosy elektromekhaniki. Trudy VNIIEM. 2017. T.160. S. 3-19.
  10. Sergeyev R. N., Osipov M. N. Pretsizionnaya kontrol'no-izmeritel'naya sistema na osnove tsifrovoy spekl-interferometrii // "Orbita molodozhi" i perspektivy razvitiya rossiyskoy kosmonavtiki: sbornik dokladov Vserossiyskoy molodozhnoy nauchno-prakticheskoy konferentsii. Tomsk: Izd-vo TPU. 2017. S. 163-164.
  11. Shakhmatov E. V., Zhuravlev O. A., Sergeev R. N., Safin A. I. Development and application of mobile digital speckle interferometer for vibrometer model sample honeycomb // Procedia Engineering. 2015. №106. P. 247 252.
  12. M. N. Osipov, R. N. Sergeev. The influence of the aperture diaphragm on the size of the subjective speckles and the application of this in speckle photography // J. Phys.: Conf. Ser. 1368, 022068. 2019. doi: 10.1088/1742-6596/1368/2/02206.
  13. Osipov M. N., Khokhlov V. A., Chekmenev A. N. Razvitiye tsifrovoy spektr-interferometrii dlya issledovaniya glubokikh protsessov v prirode vremeni // Vestnik SamGU. Yestestvennonauchnaya seriya. 2013. №9/2(110). S. 109-117.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Osipov M.N., Sergeev R.N., Limov M.D.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Свидетельство о регистрации СМИ, 16+

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies