Optimization of probabilistic operational characteristics of a neural network algorithm for predictive diagnostics of industrial equipment failures through automated processing of a training sample

Cover Page

Cite item

Full Text

Abstract

The paper considers the optimization of probabilistic operational characteristics of a neural network algorithm for predictive diagnostics of industrial equipment malfunctions. The probability of a false alarm and the probability of detecting a malfunction are accepted as optimized parameters, which are generally accepted metrics for the effectiveness of situation analysis and decision-making systems. The task of optimizing operational characteristics is decomposed to the level of influencing technical parameters of the system and reduced to finding the optimal values of the base calculation time of the derivatives of the measured technological parameters and the time of fault development. Automated processing of the training sample allows you to reduce the time spent on creating a system for predictive diagnostics of industrial equipment failures. The result of optimization of the probabilistic operational characteristics of the neural network algorithm is presented and optimal values of the variable parameters are obtained, as well as a result of training and testing on real telemetry data of the electric power pump of the turbine unit of the CHP, optimal values of the optimized parameters are obtained, according to which conclusions are drawn and further actions are proposed to improve the result.

.

About the authors

Ivan V. Nekrasov

V. A. Trapeznikov Institute of Control Sciences, Russian Academy of Sciences

Author for correspondence.
Email: ivannekr@mail.ru
ORCID iD: 0000-0003-0520-7222
SPIN-code: 1204-7269
Scopus Author ID: 57200274156

Ph.D.

Russian Federation, Moscow

Yuriy D. Konstantinovskiy

Bauman Moscow State Technical University

Email: uran9000@mail.ru

Student

Russian Federation, Moscow

Nikolay S. Kukin

Autonomous Non-Profit Organization “Institute of Engineering Physics”

Email: n.s.kukin@mail.ru
ORCID iD: 0000-0003-3889-2094

Candidate of Science (Engineering), Head of the group

Russian Federation, Moscow

References

  1. Divya, D., Marath, B. and Kumar, M. B. (2022), “Review of fault detection techniques for predictive maintenance”, Journal of Quality in Maintenance Engineering, vol. 29, no. 2, pp. 420-441. doi: 10.1108/JQME-10-2020-0107.
  2. Neupane, D., Mohamed, R. B., Dazeley, R. and Aryal, S. (2024), Data-driven Machinery Fault Detection: A Comprehensive Review, School of IT, Deakin University, WaurnPonds, Geelong, Australia.
  3. Fernandes, M., Corchado, J. M. and Marreiros, G. (2022), “Machine learning techniques applied to mechanical fault diagnosis and fault prognosis in the context of real industrial manufacturing use-cases: a systematic literature review”, Applied Intelligence, vol. 52, pp. 14246-14280. doi: 10.1007/s10489-022-03344-3
  4. Agasiev, T. A. and Karpenko, A. P. (2016), “Meta-model method of permanent parameter tuning of optimization algorithms”, Mashinostroenie i komp‘yuternye tekhnologii. Nauka i obrazovanie. Elektronnyy zhurnal MGTU im. N. E. Baumana, vol. 9, pp. 92-110. (In Russian).
  5. Kashirina, I. and Demchenko, M. (2018), “Research and comparative analysis of optimization methods used in training neural networks”, Vestnik Voronezhskogo Gosudarstvennogo Universiteta. Seriya: Sistemnyy analiz i informatsionnye tekhnologii, pp. 123-132. doi: 10.17308/sait.2018.4/1262. (In Russian).
  6. Federal Agency for Technical Regulation and Metrology (2019), GOST P 53564-2009: Monitoring sostoyaniya oborudovaniya opasnykh proizvodstv. Trebovaniya k sistemam monitoringa. [GOST P 53564-2009. Monitoring of the equipment condition of hazardous industries. Requirements for monitoring systems], Standartinform, Moscow, Russia. (In Russian).
  7. Nekrasov, I. V., Konstantinovskiy, Yu. D. and Kukin, N. S. “Predictive Diagnostics of Power Generating Equipment Failures Based on Neural Network Technology”, 5th International Conference on Neural Networks and Neurotechnologies (NeuroNT'2024). Saint Petersburg Electrotechnical University "LETI" – accepted for publication. (https://events.etu.ru/#/application/8096/info - authorization is required)
  8. Fedotov, A. V. and Skabkin, N. G. (2010), Osnovy teorii nadezhnosti i tekhnicheskoy diagnostiki: konspekt lektsiy [Fundamentals of reliability theory and technical diagnostics: lecture notes], Izdatel’stvo Omskogo Gosudarstvennogo Tekhnicheskogo Universiteta, Omsk, Russia. (In Russian).
  9. Schmidt, A. A. and Kozyrev, A. V. (2023), “Analiz nauchno-metodicheskogo apparata diagnostiki i kontrolya, monitoringa I prognozirovanya voennoy techniki svyazi”, Tekhnika sredstv svyazi, vol. 164, no. 4, pp. 81-92. (In Russian).
  10. Smola, A. and Vishwanathan, S. V. N. (2008), Introduction to machine learning, Cambridge University Press, Cambridge, UK.
  11. Gmurman, V. E. (1972), Teoriya veroyatnostey i matematicheskaya statistika [Probability theory and mathematical statistics], Vishaya Shkola, Moscow, Russia. (In Russian).
  12. Johnson, N. and Lyon, F. (1980), Statistika i planirovanie eksperementa v tekhnike i nauke. Metody obrabotki dannykh [Statistics and experiment planning in engineering and science. Data processing methods], Translated from English by E. K. Letsky (ed.), Mir, Moscow, Russia. (In Russian).
  13. Solodovnikov, V. V., Plotnikov, V. N. and Yakovlev, A. V. (1985), Osnovy teorii i element system avtomaticheskogo regulirovaniya: Uchebnoe posobie dlya priborostroitel’nykh spetsial’nostey VUZov [Fundamentals of theory and elements of automatic control systems: A textbook for instrument-making specialties of universities], Mashinostroenie, Moscow, Russia. (In Russian).
  14. Attetkov, A. V., Galkin, S. V. and Zarubin, V. S. (2003), Metody optimizatsii [Optimization methods], Izdatel’stvo MGTU im. N.E. Baumana, Moscow, Russia. (In Russian).
  15. Cherdyntsev, V. A. (2007), Priem signalov na fone pomekh. Uchebnoe posobie dlya studentov radiotekhnicheskikh spetsial’nostey [Reception of signals against the background of interference. A textbook for students of radio engineering specialties], Belorusskiy Gosudarstvennyy Universitet Informatiki b Radioelektroniki, Minsk, Belarus. (In Russian).
  16. Scikit-learn reference (2024), avalible at: https://scikit-learn.org/ (Accessed 27 August 2024).
  17. Croall, I. F. and Mason, J. P. (Eds.) (1992), Industrial Applications of Neural Networks, ECSC — EEC — EAEC, Brussels, Luxembourg.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Nekrasov I.V., Konstantinovskiy Y.D., Kukin N.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Journal of Dynamics and Vibroacoustics

ISSN 2409-4579 (Online)

Publisher and Founder: Samara National Research University, 34, Moskovskoye shosse, Samara, 443086, Russian Federation.

Extract from the register of registered media

Editor-in-chief:  Academician of the RAS
E. V. Shakhmatov 

4 issues per year.

Free price

Editorial address: room 324, 43, Gaya street, Samara, 443086

Address for correspondence: 34, Moskovskoye shosse, Samara, 443086, Russian Federation, Samara National Research University (room 324, building 14)

Phone: 8 (846) 267 47 66

e-mail: dynvibro@ssau.ru

www: https://dynvibro.ru

© Samara University

 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies