Численное моделирование вихревых пульсаций в гасителе шума трубопровода

Обложка

Цитировать

Полный текст

Аннотация

В работе представлено исследование динамических характеристик гасителя колебаний в трубопроводе, а именно исследование вихревых пульсаций в трубопроводе, возникающих за гасителем колебаний. Для этой цели была разработана численная методика оценки гидродинамического шума, которая основана на модели турбулентности LES. Полученные данные численных расчётов показывают характерный уровень гидродинамического шума в гасителе колебаний, который позволяет оценить уровень фонового шума в трубопроводе. Данные, полученные в результате численных расчётов, частично совпадают с экспериментальными данными, которые подтверждают адекватность разработанной модели в низкочастотном диапазоне.

Об авторах

Кирилл Андреевич Романов

Самарский национальный исследовательский университет имени академика С.П. Королёва (Самарский университет)

Автор, ответственный за переписку.
Email: romanov.kirill.94@mail.ru

Лаборант научно-образовательного центра №402 (НОЦ-402)

Россия

Георгий Михайлович Макарьянц

Самарский национальный исследовательский университет имени академика С.П. Королёва (Самарский университет)

Email: georgy.makaryants@gmail.com

Д.т.н., профессор кафедры автоматических систем энергетических установок

Россия

Список литературы

  1. Jialin Tian, Changfu Yuan, Lin Yang, Chunming Wu, Gang Liu and Zhi Yang (2016), The vibration analysis model of pipeline under the action of gas pressure pulsation coupling, Engineering Failure Analysis, no. 66, pp. 328-340.
  2. Dequand, S., van Lier L., Hirschberg, A. and Huijnen, J. (2002), Aeroacoustic response of diffusers and bends: comparison of experiments with quasi-steady incompressible flow models, Journal of Fluids and Structures, no. 16 (7), pp. 957–969.
  3. Musaakhunova, L.F., Igolkin, A.A., Shabanov, K.Y. (2015), The vibroacoustic characteristics research of the gas pipeline, Procedia Engineering, no. 106, pp. 316-324. doi: 10.1016/j.proeng.2015.06.041.
  4. Igolkin, A.A., Musaakhunova, L.F. and Shabanov, K.Y. (2015), Method development of the vibroacoustic characteristics calculation of the gas distribution stations elements, Procedia Engineering, no. 106, pp. 309-315. doi: 10.1016/j.proeng.2015.06.040.
  5. Kårekull, O., Efraimsson, G. and Åbom, M. (2014), Prediction model of flow duct constriction noise, Applied Acoustics, no. 82, pp. 45-52. doi: 10.1016/j.apacoust.2014.03.001.
  6. Lam, G.C.Y., Leung, R.C.K. and Tang, S.K. (2014), Aeroacoustics of duct junction flows merging at different angles, Journal of Sound and Vibration, no. 333 (18), pp. 4187-4202. doi: 10.1016/j.jsv.2014.04.045.
  7. Gafurov, S., Rodionov, L. and Makaryants, G. (2016), Simulation of gear pump noise generation, 9th FPNI Ph.D. Symposium on Fluid Power, FPNI. doi: 10.1115/FPNI2016-1531.
  8. Rodionov, L. and Rekadze, P. (2015), Exploration of acoustic characteristics of gear pumps with polymeric pinion shafts, Procedia Engineering, no. 106, pp. 36-45. doi: 10.1016/j.proeng.2015.06.006.
  9. Shorin, V.P., Sanchugov, V.I. (1978), On estimating the operating efficiency of suppressors of liquid pulsations, which contain resonant loops in their structure, Power Engineering, New York, N.Y., no. 16 (2), pp. 113-120.
  10. Ermilov, M.A., Kryuchkov, A.N., Balyaba, M.V. and Shabanov, K.Y. (2015), Development of a Pressure Pulsation Damper for Gas Pressure Regulators with Account of Operation Parameters, Procedia Engineering, no. 106, pp. 277­283. doi: 10.1016/j.proeng.2015.06.036.
  11. Ermilov, M.A., Balyaba, M.V., Kryuchkov, A.N. and Shabanov, K.Y. (2015), The experimental development of the pulsation damper in a gas reduction line, 22nd International Congress on Sound and Vibration, ICSV.
  12. Golovin, A.N. and Shorin, V.P. (1982), Designing fluid-oscillation dampers, Power Engineering, New York, N.Y., no. 20 (4), pp. 132-138.
  13. Singh, N.K. and Rubini, P.A. (2015), Large eddy simulation of acoustic pulse propagation and turbulent flow interaction in expansion mufflers, Applied Acoustics, no. 98, pp. 6-19. doi: 10.1016/j.apacoust.2015.04.015
  14. Xiwen, Dai. (2016), Vortex convection in the flow-excited Helmholtz resonator, Journal of Sound and Vibration, no. 37, pp. 82-93.
  15. McDonald, A.T. and Fox, R.W. (1966), An experimental investigation of incompressible flow in conical diffusers, International Journal of Mechanical Sciences, no. 8 (2), pp. 125-130, IN5-IN6, 131-139.
  16. Kwong, A.H.M. and Dowling, A.P. (1994), Unsteady flow in diffusers, Journal of Fluids Engineering, Transactions of the ASME, no. 116 (4), pp. 842-847.
  17. Gloerfelt, X. and Lafon, P. (2008), Direct computation of the noise induced by a turbulent flow through a diaphragm in a duct at low mach number, Computers and Fluids, no. 37 (4), no. 388-401. doi: 10.1016/j.compfluid.2007.02.004.
  18. Menter, F.R. and Sarkar, S. (1994), Two-equation eddy-viscosity turbulence models for engineering applications, AIAA Journal, no. 32 (8), pp. 1598-1605.
  19. Nicoud, F. and Ducros, F. (1999), Subgrid-scale stress modelling based on the square of the velocity gradient tensor, Flow, Turbulence and Combustion, no. 62 (3), pp. 183-200. doi: 10.1023/A:1009995426001.
  20. Pope, S. (2000), Turbulent Flows, Cambridge: Cambridge Univ. Press.
  21. Smol'yakov, A.V. (2001), Noise of a turbulent boundary layer flow over smooth and rough plates at low mach numbers, Acoustical Physics, no. 47 (2), pp. 218-225. doi: 10.1134/1.1355808.
  22. Gullman-Strand, J., Tornblom, O., Lindgren, B., Amberg, G. and Johansson, A.V. (2004), Numerical and experimental study of separated flow in a plane asymmetric diffuser, International Journal of Heat and Fluid Flow, no. 25, pp. 451-460.
  23. Wallin, S. and Johansson, A.V. (2000), An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows, Journal of Fluid Mechanics, no. 403, pp. 89-132.
  24. Wilcox, D.C. (1993), Turbulence Modeling for CFD, DCW Industries Inc.
  25. Jakirlic, S., Kadavelil, G., Kornhaas, M., Schafer, M., Sternel, D.C. and Tropea, C. (2010), Numerical and physical aspects in LES and hybrid LES/RANS of turbulent flow separation in a 3-D diffuser, International Journal of Heat and Fluid Flow, no. 31, pp. 820-832.
  26. Makaryants, G.M., Gafurov, S.A., Zubrilin, I.A., Kruchkov, A.N., Prokofiev, A.B. and Shakhmatov, E.V. (2013), Design methodology of hydrodynamic noise silencer, 20th International Congress on Sound and Vibration, ICSV, no. 3, pp. 2531-2536.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Кирилл Андреевич Романов, Георгий Михайлович Макарьянц, 2018

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-ShareAlike 4.0 International License.

Динамика и виброакустика

ISSN 2409-4579 (Online)

Учредитель и издатель журнала: ФГАОУ ВО «Самарский национальный исследовательский университет имени академика С. П. Королёва» (Самарский университет), Московское шоссе, 34, 443086, г. Самара, Российская Федерация.

Выписка из реестра зарегистрированных СМИ

Главный редактор: академик РАН Евгений Владимирович Шахматов

4 выпуска в год

Цена свободная

Адрес редакции: 443086, г. Самара, ул. Гая, 43, 324 ауд.

Адрес для корреспонденции: 443086, г. Самара, Московское шоссе, 34, Самарский национальный исследовательский университет (Самарский университет), 14 корпус, 324 ауд.

Тел: 8 (846) 267 47 66

e-mail: dynvibro@ssau.ru

www: https://dynvibro.ru

© Самарский университет

 

 

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах