Vortex pulsation simulation of a piping noise dampener

Cover Page

Cite item

Full Text

Abstract

This paper presents a research on dynamic characteristics of an internal pipe noise dampener. The study covers an investigation of vortex pulsations within a pipe system after the dampener. For this purpose, the numerical technique of estimation of hydrodynamic noise after the dampener diffuser has been developed. This technique is based on LES turbulence model. The obtained numerical data illustrates the inherent hydrodynamic noise level in the dampener diffuser. This noise level allows us to estimate background noise condition of the piping in which dampeners are used. The numerical results are verified by experimental data which confirm the adequacy of the developed model at the low frequency range.

About the authors

Kirill Romanov

Samara National Research University

Author for correspondence.
Email: romanov.kirill.94@mail.ru

Laboratory assistant of the scientific and educational center no. 402 (REC-402)

Russian Federation

Georgy Makaryants

Samara National Research University

Email: georgy.makaryants@gmail.com

Doctor of technical sciences, professor of the Department of Power Plant Automatic Systems

Russian Federation

References

  1. Jialin, T., Changfu, Y., Lin, Y., Chunming, W., Gang, L. and Zhi, Y. (2016), The vibration analysis model of pipeline under the action of gas pressure pulsation coupling, Engineering Failure Analysis, no. 66, pp. 328–340.
  2. Dequand, S., van Lier, L., Hirschberg, A. and Huijnen, J. (2002), Aeroacoustic response of diffusers and bends: comparison of experiments with quasi-steady incompressible flow models, Journal of Fluids and Structures, no. 16 (7), pp. 957–969.
  3. Musaakhunova, L.F., Igolkin, A.A. and Shabanov, K.Y. (2015), The vibroacoustic characteristics research of the gas pipeline, Procedia Engineering, no. 106, pp. 316-324. doi: 10.1016/j.proeng.2015.06.041
  4. Igolkin, A.A., Musaakhunova, L.F. and Shabanov, K.Y. (2015), Method development of the vibroacoustic characteristics calculation of the gas distribution stations elements, Procedia Engineering, no. 106, pp. 309-315. doi: 10.1016/j.proeng.2015.06.040
  5. Kårekull, O., Efraimsson, G. and Åbom, M. (2014), Prediction model of flow duct constriction noise, Applied Acoustics, no. 82, pp. 45-52. doi: 10.1016/j.apacoust.2014.03.001.
  6. Lam, G.C.Y., Leung, R.C.K. and Tang, S.K. (2014), Aeroacoustics of duct junction flows merging at different angles, Journal of Sound and Vibration, no. 333 (18), pp. 4187-4202. doi: 10.1016/j.jsv.2014.04.045.
  7. Gafurov, S., Rodionov, L. and Makaryants, G. (2016), Simulation of gear pump noise generation, 9th FPNI Ph.D. Symposium on Fluid Power, FPNI 2016. doi: 10.1115/FPNI2016-1531.
  8. Rodionov, L. and Rekadze, P. (2015), Exploration of acoustic characteristics of gear pumps with polymeric pinion shafts, Procedia Engineering, no. 106, pp. 36-45. doi: 10.1016/j.proeng.2015.06.006.
  9. Shorin, V. P. and Sanchugov, V.I. (1978), On estimating the operating efficiency of suppressors of liquid pulsations, which contain resonant loops in their structure, Power Engineering, New York, N.Y., no. 16 (2), pp. 113-120.
  10. Ermilov, M.A., Kryuchkov, A.N., Balyaba, M.V. and Shabanov, K.Y. (2015), Development of a Pressure Pulsation Damper for Gas Pressure Regulators with Account of Operation Parameters, Procedia Engineering, no. 106, pp. 277­283. doi: 10.1016/j.proeng.2015.06.036.
  11. Ermilov, M.A., Balyaba, M.V., Kryuchkov, A.N., Shabanov, K.Y. (2015), The experimental development of the pulsation damper in a gas reduction line, 22nd International Congress on Sound and Vibration, ICSV 2015.
  12. Golovin, A.N. and Shorin, V.P. (1982), Designing fluid-oscillation dampers, Power Engineering (New York), no. 20 (4), pp. 132-138.
  13. Singh, N.K. and Rubini, P.A. (2015), Large eddy simulation of acoustic pulse propagation and turbulent flow interaction in expansion mufflers, Applied Acoustics, no. 98, pp. 6-19. doi: 10.1016/j.apacoust.2015.04.015.
  14. Xiwen, D. (2016), Vortex convection in the flow-excited Helmholtz resonator, Journal of Sound and Vibration, no. 370, pp. 82–93.
  15. McDonald, A.T. and Fox, R.W. (1966), An experimental investigation of incompressible flow in conical diffusers, International Journal of Mechanical Sciences, no. 8(2), pp. 125-130, IN5-IN6, 131-139.
  16. Kwong, A.H.M. and Dowling, A.P. (1994), Unsteady flow in diffusers, Journal of Fluids Engineering, Transactions of the ASME, no. 116 (4), pp. 842-847.
  17. Gloerfelt, X. and Lafon, P. (2008), Direct computation of the noise induced by a turbulent flow through a diaphragm in a duct at low mach number, Computers and Fluids, no. 37(4), pp. 388-401. doi: 10.1016/j.compfluid.2007.02.004
  18. Menter, F.R and Sarkar, S. (1994), Two-equation eddy-viscosity turbulence models for engineering applications, AIAA Journal, no. 32 (8), pp. 1598-1605.
  19. Nicoud, F. and Ducros, F. (1999), Subgrid-scale stress modelling based on the square of the velocity gradient tensor, Flow, Turbulence and Combustion, no. 62 (3), pp. 183-200. doi: 10.1023/A:1009995426001.
  20. Pope, S. (2000), Turbulent Flows, Cambridge: Cambridge Univ. Press.
  21. Smol'yakov, A.V. (2001), Noise of a turbulent boundary layer flow over smooth and rough plates at low mach numbers, Acoustical Physics, no. 47(2), pp. 218-225. doi: 10.1134/1.1355808.
  22. Gullman-Strand, J., Tornblom, O., Lindgren, B., Amberg, G. and Johansson, A.V. (2004), Numerical and experimental study of separated flow in a plane asymmetric diffuser, International Journal of Heat and Fluid Flow, no. 25, pp. 451–460.
  23. Wallin, S. and Johansson, A.V. (2000), An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows, Journal of Fluid Mechanics, no. 403, pp. 89–132.
  24. Wilcox, D.C. (1993), Turbulence Modeling for CFD, DCW Industries Inc.
  25. Jakirlic, S., Kadavelil, G., Kornhaas, M., Schafer, M., Sternel, D.C. and Tropea, C. (2010), Numerical and physical aspects in LES and hybrid LES/RANS of turbulent flow separation in a 3-D diffuser, International Journal of Heat and Fluid Flow, no. 31, pp. 820-832.
  26. Makaryants, G.M., Gafurov, S.A., Zubrilin, I.A., Kruchkov, A.N., Prokofiev, A.B. and Shakhmatov, E.V. (2013), Design methodology of hydrodynamic noise silencer, 20th International Congress on Sound and Vibration 2013, ICSV 2013, no. 3, pp. 2531-2536.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Кирилл Андреевич Романов, Георгий Михайлович Макарьянц

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Свидетельство о регистрации СМИ, 16+

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies