STUDY OF THIRD-ORDER SYSTEM STABILITY IN THE SPACE OF CHARACTERISTIC EQUATION COEFFICIENTS
- Authors: Prokofev A.B.1, Safonov S.V.2
-
Affiliations:
- Samara State Aerospace University (national research university) 443086, Russia, Samara, Moskovskoye shosse, 34
- Voronezh State Technical University 394026, Russia, Voronezh, Moskovskiy prospect, 14
- Issue: Vol 3, No 1 (2016)
- Pages: 39-46
- Section: Articles
- Published: 16.03.2016
- URL: https://dynvibro.ru/dynvibro/article/view/2972
- DOI: https://doi.org/10.18287/2409-4579-2016-3-1-39-46
- ID: 2972
Cite item
Full Text
Abstract
The problem of building the stability space for third-order control system is solved. The 3D stability space has coefficients of characteristic equation as coordinates. Analytical conditions of system stability are defined. Different variants of crossing of stability border surface by coefficients of characteristic equation are considered. The analysis of changes in location of roots of system characteristic equation and in types of step responses under these variants is fulfilled.
Keywords
About the authors
A. B. Prokofev
Samara State Aerospace University (national research university) 443086, Russia, Samara,Moskovskoye shosse, 34
Author for correspondence.
Email: proka@mail.ru
Доктор технических наук, профессор кафедры автоматических систем энергетических установок
Russian FederationS. V. Safonov
Voronezh State Technical University 394026, Russia, Voronezh, Moskovskiy prospect, 14
Email: safonov@vorstu.ru
References
- Gimadiev, A.G., Kruchkov, A.N., Prokofev, A.B., Shakhmatov, E.V. and Shorin, V.P. (2002), Avtomatika i regulirovanie aviacionnikh dvigatelei i energeticheskikh ustanovok. Chast 1. Teoriya avtomaticheskogo regulirovaniya , SSAU, Samara, 139 p. (in Russian).
- Dyadic, V.F., Baydaly, S.A. and Krinicin, N.S. (2011), Teoriya avtomaticheskogo regulirovaniya , TPU, Tomsk, 196 p. (in Russian).
- Vasilev, K.K. (2001), Teoriya avtomaticheskogo regulirovaniya (sledyaschie sistemi) , Ulanovsk, 98 p. (in Russian).
- Kozlov, D.V. (2011), Optimalnoe po bistrodeystviyu posicionirovanie dvigatelya postoyannogo toka (Sistema tretego poryadka) // Izvestiya TulGU. Technicheskiye nauki , TulSU publ., Tula, Issue 5, Part 1, pp. 134 – 142. (in Russian).
- Dobrobaba, U.P., Murlin, A.U., Chumak, I.A., Voevodov, A.A. and Stepkin, A.A. (1998), Obosnovanie etalonnikh peredatochnikh funkciy system tretego poryadka // Izvestiya vishikh uchebnikh zavedenij. Pischevaya technologiya , Kuban State Technology University publ., Krasnodar, no. 2-3, pp. 75-76. (in Russian).
- Yingchun Zhong and Yan Luo (2011), Comparative study of single-loop control of third-order object, Procedia Engineering, Vol. 15, pp. 783 – 787.